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Effect of  Modal  Filter Errors 
on Vibration Control Characteristics 

Jai-Hyuk Hwang*, Jung-Soo Kim** and Joon-Soo Kim*** 
(Received October 24, 1997) 

When designing a control system for vibration suppression of flexible structures using modal 

control strategy, one must know the modal displacements and velocities of the controlled modes. 

If the vibration control forces are designed based on inaccurate modal states, the closed-loop 

performance of the vibration control system will be degraded depending on the extent of the 

modal filter errors. In this study, the effect of modal filter errors on the vibration control 

characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control).  

A Lyapunov asymptotic stability condition that depends on the magnitude of the modal filter 

errors is derived. The extent of the response deviation of the closed-loop system is also derived 

and evaluated using operator techniques. The extent of the response deviation is ti3und to be 

proportional to the magnitude of the modal filter errors. 

Key Words:  Modal Filter Errors, Vibration Control, Asymptotic Stability Condition, Obser- 

vation Spillover. 

I. Introduction 

In order to suppress vibration of flexible struc- 

tures such as space structures using modal control 

method, the modal displacements and velocities 

must be known. In other words, the calculation of 

the feedback control forces for vibration suppres- 

sion requires accurate knowledge of modal states. 

Since the vibration sensors measure the actual 

displacements, additional work is needed to con- 

vert the sensor readings into the knowledge of 

modal states. This can be done by using either 

observers or modal filters. If observers are used to 

estimate the modal states for the controlled modes 

of the discretized model of the system, observa- 

tion spillover due to sensors and control spillover 

due: to a finite number of actuators may cause the 
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closed loop system to become unstable. If the 

modal filters based on the expansion theorem is 

used, however, the observation spillover can be 

minimized by converting the sensor readings into 

a distributed output. The output accuracy can be 

further enhanced by increasing the number of 

sensors employed. The modal filter method was 

originally proposed by Meirovitch and Baruh 

(Meirovitch and Baruh, 1981, 1982), with later 

refinements(Meirovitch and Baruh, 1985, Choe 

and Baruh, 1983). ttowever, errors can arise 

when using the modal filters. The sources of error 

are system parameter uncertainty, inexact system 

eigenfunctions, the use of interpolation functions, 

and a finite number of sensors employed. Hence, 

the natural question is how the control law 

designed on the basis of" the information furnished 

by the modal filters containing such errors will 

influence the performance of the closed-loop 

system. That is, how robust is the system perfor- 

mance with respect to the modal filter errors 7 

Although many methods have been devised to 

date lbr vibration control of flexible structures, 

tile main drawback has been that the 

computational and implementational complexity 
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rapidly increases as the number of the controlled 

modes increases. Meirovitch and coworkers 

(Meirovitch and Baruh, 1982, Merirovitch, 1980, 

Meirovitch et al, 1993) have proposed an in- 

dependent modal space control(lMSC) method 

in which modal control forces are individually 

designed for each mode. The method entails using 

the modal matrix as a transformatien matrix to 

convert the coupled equations of the motion of 

the system into a set of decoupled equations in 

modal coordinates. A modal control law can then 

be designed for one mode at a time based on the 

information furnished by the respective modal 

states, and the control system design and imple- 

mentation can therefore become very simple, irre- 

spective of the total number of system modes to be 

controlled. The modal control law thus designed 

can then be converted into the actual control force 

by using the reverse coordinate transformation. 

The main drawback of this method is that the 

number of required actuators should be equal to 

the number of the controlled modes. 

Although a number of studies have dealt with 

robustness properties of IMSC method(Hwang 

1993, 1994, Hwang et al, 1996), the effect of the 

modal filter errors on the performance character- 

istics of IMSC has not been reported to date. The 

main purpose of the present investigation is to 

undertake such an analysis. First, the effect of the 

modal estimation error arising fl:om the modal 

filter errors on the stability of the closed loop 

system is investigated; the condit ion for 

asymptolic stability in the sense of Lyapunov is 

derived. Next, an upper bound on the deviation of 

the vibration control law fiom the nominal design 

value due to the modal filter errors is derived 

using operator techniques. The bound on the 

response deviation of the closed loop syslem is 

found to be directly' proportional to the magni- 

tude of the modal filter errors. The authors 

believe that the present study is the first reported 

to date that directly deals with the effect of the 

modal filter errors on the performance character- 

istics of the IMSC method. 

2. System Design with Modal Filters 

Modal filters for estimating modal states of 

controlled modes can be expressed in the form of 

i;~ ( l )  = D y l t t  I l l  

c~c (t)  - l ) 9  ( t)  (2) 

where ~c(t) and 4c ( t )  are the estimated modal 

displacement and velocity vectors of order n, 

respectively, and y ( l )  and 3 ) (l) are lbe displace- 

ment and velocity sensor output vectors of order 

t(,  respectively. For computational simplicity and 

yet without sacrificing generality, the modal filter 

matrix D for one-dimensional continuous sys- 

tems can be written as (Meirovitch and Baruh. 

1982) 

D,. 1),1- >-9 I!'-251.r, i =  I, 2, "", K 

r :=  1, 2, ..-, n (3) 

['or which 

I,,- -- [ I~,!5 I) 2) ] r _ h f ' M  (hi  -- h~ ) 

qSr(hi-- h~) L ( ~ )  
~, (15__ (25__ d~lK~ --  I ~  - -  0 

o~$_~1. 

In the above equations, ~b,- denotes the r - th  

eigenvector, M the mass operator, h the length oi 

an individual finite element, K the number oL 

sensors, n the number of controlled modes, and 1. 

(~) the interpolation function vector. Althougl 3 

the slope y ' ( t )  and angular velocity 35'(t) could 

also be included in the sensor output for better 

accuracy, it is not considered here. If enough 

sensors are used, the desired accuracy can still be 

obtained from the displacement and velocity sen- 

sor outputs only. 

From the expansion theorem, the following 

definition for the displacement sensor output 

vector can be given(Meirovitch, 1980, Inman, 

1989) 

yj( l )  tO(X i, I ) -=~ ,~ r (X j )q ,~ ( [ ) ,  
r = l  

j = l ,  2, ..., K (4) 

Recasting Eq. (4) in matrix form, 

.V (t)  = Cq (t)  (5) 

where 
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C;,-==:(),(x~), j - - I ,  2, ..-, 1(, r==l ,  2, --. 

Classifying the system modes into the controlled 

modes q<(k) and the residual modes qR( t ) ,  the 

displacemenl sensor output  vector can be cast in 

the form 

y (~<) :-- Cc: / ( ( t )  i-C,<qx U) (6) 

where 

Cc:=~Co,- l ,  Ccjr r j=.-I, 2, ..., K 

C~ = [ C,~], C~,,. r ( .vA,  j = 1, 2, -- . ,  K 
r=~z-4-1, ~z-: 2, ... 

and the velocity sensor output  vector can be 

written as 

9 (t)  = Ccc) c i t )  § Ca,0R (t) (7) 

Substi tut ing Eq. (6) and (7) into Eq. (1) and 

(2), respectively, we have 

8 c ( t ) --== DCcq<: (t) + I_)C~q~ (t) (8) 
O(t) '=DC~o~(I) +DC.gs~(t) (9) 

If the matrix D is exact, the modal  filter should 

provide accurate estimates of the modal states, 

and, eTa(t), c)'~(l) will be identical to q<:(/) and, 

()< ( t ) ,  respectively. The required condi t ion  criter- 

ia can be expressed as 

DCc = Ic, DC<~ - 0 

where [c is the unit  matrix of order n. If D is not 

exact, however, the modal filter output  will con- 

rain errors, and ~ c ( t )  and 2to(t)  will deviate 

from qc ( l )  and ( ' tc( l ) ,  respectively. If the esti- 

mates conta in ing  errors are used in feedback, the 

c l o s e d - l o o p  system pe r fo rmance  will be 

degraded. 

Let us now consider the following modal equa- 

tions for the controlled modes 

g~( t )+co , .2 (r  ~ ...... 1 , 2 , - . . ,  ,~ 
( l o )  

where q , ( t )  and f r ( l )  denote v th niodal dis- 

placement and modal force, respectively. The 

modal force is given by 

S,+(l)=~ ~r  , t )UD,  r=  1, ") 

/ / J  

( l l )  

where f ( . v .  [) is the actual distributed forcc. 

Applying vector notation,  Eq. (10) can be expres- 

sed as 

lc~t'c ( i )  + Acqc ( t)  - f ( t )  (12) 

for which 

A c = diag[  wj2wz 2''' co,,~], 
f i t )  = [ i ;  ( t ) A / ~ ) - - - A ( t ) ]  ~ 

Let us now apply the IMSC method to design 

a control law for independent  control of  each 

mode. Since ihe r - t h  modal force i t ( t )  depends 

only on r - t h  modal states q r ( l )  end Or ( t ) ,  the 

following equat ion can be used 

. D ( t ) - - k , ~ , v ~ ( t ) - t e ~ O ~ ( t ) ,  r - i ,  2, ..., ~,~ 

(13) 

Applying  optimal control theory furnishes us 

with the following expressions for the feedback 

gains kp,- and kv~: 

ks, r - - c o , . ( - o ) T - t - ~ + R Y ' ) ,  r = l ,  2, ..-, n 

kv~ {2c0r(--co,-+,/c0~-777T r) 4-R,-~} */2, 

r = l >  2, ..., n, 

where R,- denotes a weighting factor for the 

control force. Since wT >0,  the condi t ions  ks, r > 0  

and kv,->0 are also satisfied. Rewrit ing Eq. (13) 

in vector form. 

f ( t )  =-= - K e q c ( t )  KvOc(r  (14) 

for which control gain matrices Kp and K v  are 

positive definite and given by 

I(e --  di~ag L k m k e z "  " kp~ ~ 

Kv = diag I kvl kv.e"" kv;, 1. 

However, as the modal displacements q~(t)  and 

modal velocities c)~(l) cannot  be directly mea- 

sured, we obtain the estimated modal displace- 

ments ~c(t)  and modal velocities q ( t )  by using 

the modal filters. Thus, the control force of Eq. 

(14) is replaced by 

i ( t )  . . . .  K , , &  ( t )  - K~Zs <: i t )  (15) 

We now consider the rnodal filter errors in 

some detail. The errors can be generated from 

several sources: The first is the errors in eigenfun- 

ctions r The second is dividing the cont inuous  

region into a finite number  of elements. "[he third 

is the use of the interpolat ion function. The fourth 

is errors in system parameters. All possible errors 

are to he included, and the modal filter equat ion 
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that includes errors can be written as 

~c (t)  = ( D +  zlD) y ( t )  (16) 

q ( t )  = ( D + A D )  S' (t)  (17) 

where D represents the exact modal filter matrix, 

and AID denotes a matrix containing the modal 

filter errors. Substituting Eq. (6) and (7) into Eq. 

(16) and (17) respectively, we obtain the follow- 

ing equations 

~c (t) = D y ( t  ) + zJDCcqc ( t ) + ADCRqR (t)  
(18) 

0 c ( t)  =D:9 (t)  +ZlDCc4c (t)  +ADCRoR (t)  
(19) 

Since D denotes the exact modal filter matrix, we 

have D y ( / ) = q c ( t )  and D3) ( t ) =  ( t c ( t ) .  Hence, 
Eqs. (18) and (19) can be rewritten 

~c (t) = (Ic + zJDCc) qc (1) + zJDCRqR (t)  (20) 

q (t)  = (Ic + zJDCc:) Oc ( t)  + zIDC~OR (t)  (21) 

For the case of no modal filter errors, the closed- 

loop equations for the controlled modes can be 

written as 

l cqc  (t)  + Kvdtc (l)  + [Ac + K e ]  qc (t)  = 0  (22) 

When the modal filter errors are included, how- 

ever, combining Eqs. (I 5), (20), and (2 l) yields 

the following expression: 

f ( t)  = - Kp (Ic + ADCD qc (t)  

- Kv(Ic + ADCc) Oc (t) -KpADCRgtR (t) 

- KvADCR4 R ( t ) (23) 

Substituting Eq. (23) into Eq. (12) and rear- 

ranging, the c losed- looping equations become 

Ic?i (l)  + K v ( I c  + ADCc) qc (t)  

+ [Ac ~-Kp (Ic +ADCc)I qc (t) 
-- --KvAIDC~4~ (t)  --KPzJDCRqR (t)  (24) 

When modal filter errors are present, the terms in 

the matrix and the residual modes on the right 

-hand side of the above equation can serve as a 

source of continued excitation. Furthermore, Eq. 

(24) becomes coupled due to the nondiagonali ty 

of the z1DCc matrix, and the modes can no longer 

be considered independent. Also, the introduction 

of observation spillover, in which the residual 

modes contaminate the measurements of the 

controlled modes, can significantly influence the 

system performance. For a complete analysis of 

the stability and performance of the: c losed- loop 

system, the equations governing the residual 

modes need to be considered in conjunction with 

those for the controlled modes, further com- 

plicating the analysis. Since the primary focus of 

the present study is to determine the: effect of the 

modal filter errors on system perfi~rmance, the 

observation spillover can be assumed to be 

eliminated for the present. Since the residual 

modes are generally composed of high-frequency 

signals, the observation spillover can usually be 

eliminated by passing the sensor output through a 

low-pass filter. Hence, the resulting closed loop 

system equations can be simpled to the following 

form 

Ic;t'c (t)  + Kv (Ic + ADCc) dt c (t)  

+ [ A c + K p ( I c + z J D C c ) l q c ( t )  = 0  (25) 

The corresponding block diagram is given in 

Fig. 1. 

Fig. 1 Block diagram of closed loop system with modal filter. 
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3. Stability Analysis of the 
Closed-loop System 

The stability of the closed loop system is now 

considered. The asymptotic stability criteria for 

systems containing no modal filter errors a r e  

given by 

Kv>0 ,  Ac + Ke >O- 

Since K,,, Kv, Ac  mentioned in the previous 

section are each positive definite, the above criter- 

ia are satisfied. In other words, in the absence of 

the modal filter errors, the system is always 

asymptotically stable. When modal filter errors 

a r e  present, however, the asymptotic stability 

criteria cannot readily be obtained. The reason is 

that the corresponding closed-loop system equa- 

tions have asymmetric coefficient matrices. To 

obtain the asymptotic stability criteria, Eq. (25) 

is first cast in the form 

[ c i 4 c ( t ) + A q c ( / ) + t 3 q c ( l )  0 (26) 

where 

A = K v ( L -  +ADCc) ,  

B = Ac + KI, ( Ic + AIDCc ) . 

As mentioned above, t h e  coefficient matrices A 

and B are asymmetric due to the presence of 

modal filter errors. We now define the following 

Lyapunov function for Eq. (26): 

T T " T! V(t)=qg:[B+~']q,*[q~A, + ~ <  �9 

[ Aqc  + qc] + qcqc r .  (27) 

Since the second and third terms of the a b o v e  

equations are always positive definite, V ( t )  is 

assured to be positive definite if the first terms a r e  

positive definite. Expressing the condition in 

equation form, we get 

B + B ~ > 0  (28) 

Difl'erentiating the Lyapunov function with 

respect to time and substituting Eq. (26) into 1/ 

( t) ,  we obtain the following result: 

i / ( t ) =  _ q r [ A r B +  r r "r 1 B Ajqc qc[B F1o qc 
T Tq - - ( t c [ t 3 - 1 3  Jqc . r r  - q c ~ A + A  7] Oc. 

Rewriting in matrix form, we obtain 

1)- (1) = zrQz  (29) 

where 

(-Q3J' : L 0 c 3  

(0, = O [ = A T B  + B r A ,  
O~= O[ B -  B T (3o) 
Q3 Q ] = A + A  r 

If Q in Eq. (29) is positive definite, then V( t )  is 

negative definite and the system is asymptotically 

stable. In order to obtain a simpler formulation of 

the condition for positive definiteness of Q, we 

introduce the following transformation: 

where 

a=T>, (31) 

Equation (29) can then be cast in the form 

V ( t )  - y r T " O T F  
T T 1 = yl O , > - : v 2  [0:~ 0~0, 02~y.~ 

(32) 

A simple inspection of the above equation reveals 

that if Q~ and Oa Q2Oz-lQzr are both positive 

definite, then l ) ( t )  is negative definite. The con- 

ditions for V ( l )  to be a kyapunov function can 

be summarized as given below: 

B + B r > 0  (33a) 

..QI > 0 (33b)  
~1 __ f ]  /-'1 I / ' I T > 0  (33c) 3 'W2'cdt '072 

If the above conditions are satisfied, the system 

will be asymptotically stable even in the presence 

of modal filter errors. In summary, it can be seen 

that the coefficient matrices A and B are asym- 

metric due to the modal fiher errors ~IDCc, and 

condition (33) may be violated, for which the 

system can become unstable. 

4. Effect of Modal Filter Errors on 
Vibration Response Characteristics 

The effect of modal fiher errors on the system 

response is considered in this section. Let ec(D 

be the error between the displacement vectors of 

the controlled mode with the exact modal filters 

and the modal filters containing errors: 
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e~ ( t )  = [ e~( t )  e ~ ( t ) - " e .  ( t )~  ~ 

Subtracting Eq, (25) from Eq. (22), the govern- 

ing equat ion for e~:(t) can be written as 

L'8"c (t)  + K~dc  (t)  + (Ac + KP) ec (t)  

KvaiDCcOc(t )  +KpZlDCcqc( t )  (34) 

The above equat ion can be used to predict the 

response error ec( l )  that results from designing 

vibrat ion controllers without regard to the rnodal 

filter errors. It can be seen that the forcing term 

for e~(l) is furnished by aiD. In the absence of 

modal filter errors, we have aiD 0, and conse- 

quently, e,:(t) = 0 ,  l ~ 0 .  

To obtain an upper bound  on ec ( t ) ,  we define 

the following L=-norm:  

I l k ( / ) H -  max sup I h , ( t )  [ (35) 

where h ( t )  denotes an arbitrary function of order 

n. h ( t ) - [ h t ( t )  h 2 ( l ) " ' h , , ( l )  ] r. Setting the ini- 

tial condit ions,  e ( l ) - - ~ ( l ) - - O ,  we apply the 

Laplace transform to Eq. (34) to obtain 

CC (:;) = [IZC'S 2 -t- KV,~ -~ zqC -L K p ]  --1 ( KVS @ K p )  ~ 

ADCciic (s) (36) 

where ~ c ( s )  and go(s)  denote the Laplace 

transforms of ec( t )  and qc( t ) ,  respectively. We 

can recast the above equat ion in the Ibrm 

~c (s) -- H (s) qc (s) (37) 

in which each element of the n x n matrix H ( s )  

is given by 

kv~.s + kp,. 
H, , ( s )  = , r----,--~-,~v d,v i, j = l ,  

S- ~ A' v,S q- 697 T Rp, ' 

and do denotes i j - th element of aiDC,.. Apply ing  

the im, erse LapIace tra~sgorm to Eq. (36), we 

obtain lhe following expression involving the 

convohJtion integral 

ec(t)=[H*qc](t) f ' H ( t -  r)qc(r)dr 
(38) 

where t t ( ? ) = L - ~ [ H ( s ) ] .  To obtain  a simple 

expression for Eq.(38) we define the following 

linear operator 

~I(qc) = [H*qc7 (t)  (39) 
From Eqs. (38) and (39), an upper bound  on ~(: 

it), II<:ll, can be given by 

Ilecll: II*)(q~)II-< I1#1111 qcll (40) 

w h e r e  IIHII is the L , - i n d u c e d  norm o f  l inear 

operator  17/. Invoking an identity given by Desoer 

and Vidyasaga (Desoer and V dyasaga, 1975), we 

obta in  for IJ/.ql, 

IIH[I ,~,-~.ma~ a,f~lh,(r) ldr  (4t) 
in which a .  i - - l ,  _,'~ ---, l,l denote the i - th  row 

sum of the absolute value of matrix, aiDC<,, i. e., 

< = ~ l d , ] ,  and the function h , ( l )  i,; given by 
j = l  

�9 i /  k~,s + k p ,  ', 
h,(t) ~s + tev,S+~o,+k~,) = :  g "z . . . . . .  T . . . . .  

U -  ., ~)- 
__k~, / ~ - 2 e ,  C',ev,+(o,~.,.,,~ . . . .  
- -  ~7,.x, . . . . . . .  i ~  ~- . . . . .  - . . ~ , -  ~.~w,t)sm 

(~,.4~1-- }~1 + O,.) (42) 

where 

kvi 

._ tan-1._ iv. %~'~i , 
OJi-- ~iCOi 

&':::k*,i/kvi, i = l ,  2, .--, n 

Substi tut ing Eq. (42) in Eq.(41) and integrating, 

we obtain 

w, w,: k 1 - -exp (Xa,.) 

(431 

where 

X** =2v/ed 2a,~',(5, + o3,2 i =  1, , - ,  , . %  }g, 

f 7  . . . .  

X~, " --;. ~" = : t a n - '  wic--J-7-->~-, i= :  I. 
r t g;~ m -  {-iooi - ,  " - ,  n, 

X+~= - ~g,zr..~: i:._ t. 2, ---, n .  
�9 , / I  - ~'i 

Rearranging Eq. (41). we obtain 

cL F . . . .  exp (X2, + X.s,) IltTl[=maxw/le,,,-, ,e,,,.~,,-- I ex~7-W ~--/ t-~;,'~_n ~z L -- ' l~ �9 

(44) 

Incorpora t ing the above resuhs allows us to re- 

write Eq. (40) in the form 

f Ilecll - - m a x  sup l e , ( n  I < max 
I N i : ~ n  t.>_O L. l N i N n  r 

k + k  X 
e x  p ( X 2 i - r - ~ k ' 3 i )  

p, v,. ~--l-=exp-(X:~,.) ]Jl lqcll (45) 
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The above inequality can be cast in the form of 

IleAl<_mllqcll where m takes the place of Ih,qll 
(Stakhold, 1979). II/tll as dependent on o', and the 

natural frequency co,-. Thus, if the modal filter 

errors are small, i. e., o',~< 1, i =  1, 2, ..-, n, IIHll 
will also be small. Equation (45) also reveals that 

a linear relationship between Ile~ll and the magni- 

tude of the modal filter error exists, while the 

proportionality constant is determined by the type 

of control method. In summary, the presence of 

modal filter errors implies an error in the vibra- 

tion control response, with its magnitude bound 

by II/tllllq~[I-Therefore, ec( t )  always lies within a 

band defined by +-IIHtlltq~ll- 

5. Examples 

To demonstrate the applicability of the results 

of the previous sections, a Bernoutli-Euler beam 

clamped at one end is considered. The governing 

equation is given by 

EI[  a%,(x, t) / Sx 4] +M [3aw (x, t) / at 2] =/ (x ,  t). 

The mass per unit length M = l, dynamic stiffness 

E I = I O ,  and length l I0. The boundary condi- 

tions are 

B1(0) I, B 2 ( 0 ) = d / d x ,  

Bl (1) = d2/ dx 2, B2( l) = d3/ (~x a. 

Solving for the corresponding eigenvalue prob- 

lem, the eigenvalues can be obtained from the 

following transcendental equation 

cos (fl~l)cosh (fl,-D --1. 

Solving the above equation. 

~1=[1 .8751,  4.6941, 7.8548, 10.9955, 14.1372, 

17.2788, -..]. 

Hence, the eigenvalues and eigenvectors are given 

by 

d,. = co~=,8~EI/M, r = 1, 2, ..., 

VS,---a,-{[sin(/LI) - s i n h ( 5 , . l ) ] [ s i n ( / L x )  sin 

h (/~rX) ] + [COS (t3r[) + cosh (l~rl) ] [CO8 
(b'~x) -cosh(fl~x)]}, 

where a~ is a constant vector for normalizing the 

eigenfunctions and given by 

a,- ~0.1041, 0.005788, 0.0002453, 0.0000106, 0. 

0000004585, 0.00000001981, "'1. 

The number of controlled modes and actuators 

are each selected to be six, i. e. n = 6 .  The sensor 

positions are given by 

x ~ = ~ [ - ( ( j - - l ) ,  j - l ,  2, ..., K, 

where xj denotes the j - th  sensor position and K 

the number of sensors. The interpolation function 

is given by 

L ~ ( ~ ) = e ,  L2(~e)_l_~e.  

By applying the IMSC method, the optimal feed- 

back gain matrices can be computed as follows: 

K ~ - d i a g I O .  1454, 0.6130, 0.8948, 0.9680, 

0.9878, 0.9945], 

K v = d i a g I I . 5 1 3 5 ,  1.7961, 1.9467, 1.9839, 

1.9939, 1.9972~. 

The weighting factor RT used in the computation 

of the feedback gain matrix has been set at 0.5. 

If we assume that the exact system parameters 

and eigenfunctions are known, then the remaining 

sources of the modal filter errors are the finite 

number of sensors and the interpolation func- 

tions. Regardless of the sources, the modal filter 

errors are taken up by z/D. Therefore, we will 

confine ourselves to those errors arising from the 

finite number of  sensors only. This allows for 

simpler computation and yet entails no loss of 

generality. For theses different values of K,  the 

corresponding Z1DCc can be computed as given 

below: 

For K =  12 : ~ D C c  
0.0006 -0.0081 0.0819 -0.0258 0.0359 -0.0435 

0.0013 -0.0091 0.0062 0.0210 -0.0233 0.0375 

0.0011 0.0022 -0.0309 -0.0057 0.0253 -0.0218 

0.0008 0.0038 0.0030 0.0652 -0.0055 0.0299 

0.0006 0.0026 0.0078 0.0033 -0.1103 -0.0053 

0.0005 0.0028 0.0045 0.0121 0.0036 0.1641 

For K = 7  : , dDCc= 
0.0020 -0.0272 0.0637 -0.0872 0.1229 -0.1516 

0.0043 -0.0297 0.0211 0.0724 -0.0812 0.1390 

0.0036 0.0075 0.0972 -0.0199 0.0947 -0.0803 

0.0025 0.0132 0.0102-0.1929-0.0198 0.1414 

0.0022 0.0090 0.0292 0.0120-0.2897 0.0205 

0.0018 0.0103 0.0166 0.0573 0.0137 0.2565 
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For  K = 2  : Z1DCc= 

0.1376 -1.1376 1.1376 1.1376 1.1376 - I .1376-  

0.1815-1~1815 0.1815 -0.1815 0.1815-0.1815 

0,0648 -0,0648 0.9352 -0.0648 0.0648 -0.0648 

0,0331 -0.0331 0,0331 -I.0331 0.0331 -0.0331 

0.0200 0.0200 0.0200 0.0200 -0.9800 -0.0200 

0.0134 -0.0134 0.0134-0.0134 0.0134 1.0134 

The  above  matr ices  reveal tha t  as K increases,  

the modal  filter errors  d iminish .  App ly ing  Eq, 

(33) to de te rmine  stabi l i ty  for the above  cases, the 

fo l lowing results can be ob ta ined:  

[20[" [~ ~12 B ~ B T >  O, QI >0, ~)3 "--Q2.~-)i l(-~2T>0, 
For  K=:7 s  B ' > 0 ,  O~>0, O:r O2OiJO]>O, 

For  K 2 B ~ B ~ > 0 ,  O~<0, Oa-O,~O~'O,f<o. 

For  cases K = 1 2  and  K = 7 ,  Eq. (33) for 

Table 1 Closed loops system eigenvalues for exact 

asympto t ic  s tabi l i ty  is satisfied. However ,  for K =  

-, Q2Q1 02 .~0 "~ the inequal i t ies  Q < 0  and Q a -  1 r 

imply that  cond i t i on  (33) c a n n o t  be satisfied, and  

the  system is unstable .  The  system eigenvalues  for 

the  cases of  the exact moda l  filter and  the moda l  

filter c o n t a i n i n g  errors  are s h o w n  in T a b l e  [. 

T h e  t abu la ted  values reveal tha t  since for a 

sufficient n u m b e r  of  sensors  the modal  f~lter 

e r rors  are s m a l l  the e igenva lue  dev ia t ions  are 

smal l  as well. When  the n u m b e r  of  sensors is 

insufficient ,  however ,  the modal  filter errors  

increase,  and the complex e igenvalues  have  posi- 

tive real part,  i. e., the system becomes  unstable .  

T o  summarize ,  increas ing lhe moda l  filter errors  

can degrade  the s tabi l i ty  of  the v ib ra t ion  con t ro l  

system, as attested to in T a b l e  I. 

modal filter and modal filters containing errors. 

Mode No. Exact K -  12 K - 7 K = 2  

- 0.0727+ 1.2331i 

- 0.3065 § 1.4791i 

0.4474 • 2.3565i 

0.4840 + 4.0456i 

0.4939 + 6.4571 i 

0.4972 ~ 9.5334i 

-(11.0727 + 1.2335i 

- .0.3037+ 1.4741i 

- 0.4336 + 2.3463i 

-0.4524+4.0332i 

-0.4394+6.4440i 

-0.4157 +9.5201i 

0.0727 +: 1.2345i 

0.2974+, 1.4627i 

- -  0.4038 ~ 2.3240i 

-- 0.3905 • 4.0083i 

�9 0.3509 -+ 6.4214i 

-0.3698• 

-- 0.048(I X: 0.8400i 

0.0350:• 1.0636i 

.... 0.0450• 1.9986i 

0.0182:+3.8142i 

0.0103 +6.3232i 

0.0068 • 9.4398i 

Fig. 2 System Modal Responses for 12 sensors. F i g .  3 System Modal Control  Forces for 12 sensors. 
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For the above cases, the t ime-domain response 

of the system was been obtained through com- 

puter simulation under identical initial condi- 

tions. The results for cases K =  12 and /*2=2 are 

shown in Figs. 2-7. The modal displacement 

responses of the system for K = 1 2  are shown in 

Fig. 2, while the corresponding modal control 

forces are shown in Fig. 3. The resulting time 

-domain beam displacement is shown in Fig. 4. 

For K - - 2 ,  the modal displacements are shown in 

Fig. 5, the modal control forces are shown in Fig. 

6, and the t ime-domain beam displacement is 

shown in Fig. 7.Figures. 5 7 illustrate that when 

large modal filter errors are present, the time 

domain beam displacement response will 

diverge. In the presence of modal filter errors, a 

set of originally decoupled equations obtained by 

applying the IMSC method becomes a set of 

coupled equations, and the previously stable 

modes may become unstable. 

We now obtain an upper bound on the vibra- 

tion control response error. From the previous 

section 

L l ~ l l - ~ l l ~ l l l l q ~ l l  �9 

Applying Eq. (44), ll-Oll can be computed as 

listed in Table 2. The vibration control response 

error will always be bound by II~llllwll, and .~ ( t )  

Fig. 4 Beam Displacement Response for 12 sensors. 

Fig. 6 System Modal Control Forces for 2 sensors. 

Fig. 5 System Modal Responses for 2 sensors. Fig. 7 Beam Displacement Response for 2 sensors. 
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Table 2 Upper bounds on Ill/l] for different num- 

bers of sensors, 

KK 12 7 

IIt)[I 0.1718 0.4322 

will always lie within a band defined by 

-+-II/~ll/IqcII. As the number of sensors decreases, i. 

e., as the modal filter errors increase, the vibration 

response error increases in proportion. 

6. Conclusions 

In the present study, the effect of modal filter 

errors on the stability and response properties of 

the vibration control system designed in indepen- 

dent modal space has been analyzed. The modal 

filter errors arise from the errors in the system 

parameters, the eigenfunctions and the interpola- 

tion functions, as well as from the finite number 

of sensors employed. Since the computation and 

subsequent application of the vibration control 

forces will be based on erroneous information 

furnished by the modal filters containing the 

errors, a criricial issue is whether the vibration 

control response of the system will be robust with 

respect to these errors. It is this issue which the 

present investigation has attempted to address. 

The principal results can be summarized as fol- 

lows: 

(1) In the presence of modal state estimation 

errors due to modal filter errors, a k~capunov 

asymptotic stability condition (33) for closed 

qoop vibration control system is derived. 

(2) As the magnitude of the modal filter errors 

increases, the stability characteristics of the closed 

loop vibration control system becomes degraded. 

(3) For a given modal tilter error matrix MD, 
an upper bound (45) on the vibration response is 

derived using the Lo: norm. 

(4) The upper bound (45) is directly propor- 

tional to z/D, and the proportionality constant is 

determined by the type of control method applied. 
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